3.3.97 \(\int \frac {x^2}{(8 c-d x^3)^2 (c+d x^3)^{3/2}} \, dx\)

Optimal. Leaf size=88 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{243 c^{5/2} d}-\frac {1}{81 c^2 d \sqrt {c+d x^3}}+\frac {1}{27 c d \left (8 c-d x^3\right ) \sqrt {c+d x^3}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {444, 51, 63, 206} \begin {gather*} -\frac {1}{81 c^2 d \sqrt {c+d x^3}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{243 c^{5/2} d}+\frac {1}{27 c d \left (8 c-d x^3\right ) \sqrt {c+d x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/((8*c - d*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

-1/(81*c^2*d*Sqrt[c + d*x^3]) + 1/(27*c*d*(8*c - d*x^3)*Sqrt[c + d*x^3]) + ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])
]/(243*c^(5/2)*d)

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rubi steps

\begin {align*} \int \frac {x^2}{\left (8 c-d x^3\right )^2 \left (c+d x^3\right )^{3/2}} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{(8 c-d x)^2 (c+d x)^{3/2}} \, dx,x,x^3\right )\\ &=\frac {1}{27 c d \left (8 c-d x^3\right ) \sqrt {c+d x^3}}+\frac {\operatorname {Subst}\left (\int \frac {1}{(8 c-d x) (c+d x)^{3/2}} \, dx,x,x^3\right )}{18 c}\\ &=-\frac {1}{81 c^2 d \sqrt {c+d x^3}}+\frac {1}{27 c d \left (8 c-d x^3\right ) \sqrt {c+d x^3}}+\frac {\operatorname {Subst}\left (\int \frac {1}{(8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )}{162 c^2}\\ &=-\frac {1}{81 c^2 d \sqrt {c+d x^3}}+\frac {1}{27 c d \left (8 c-d x^3\right ) \sqrt {c+d x^3}}+\frac {\operatorname {Subst}\left (\int \frac {1}{9 c-x^2} \, dx,x,\sqrt {c+d x^3}\right )}{81 c^2 d}\\ &=-\frac {1}{81 c^2 d \sqrt {c+d x^3}}+\frac {1}{27 c d \left (8 c-d x^3\right ) \sqrt {c+d x^3}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{243 c^{5/2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 43, normalized size = 0.49 \begin {gather*} -\frac {2 \, _2F_1\left (-\frac {1}{2},2;\frac {1}{2};\frac {d x^3+c}{9 c}\right )}{243 c^2 d \sqrt {c+d x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/((8*c - d*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

(-2*Hypergeometric2F1[-1/2, 2, 1/2, (c + d*x^3)/(9*c)])/(243*c^2*d*Sqrt[c + d*x^3])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.10, size = 76, normalized size = 0.86 \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{243 c^{5/2} d}+\frac {d x^3-5 c}{81 c^2 d \left (8 c-d x^3\right ) \sqrt {c+d x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^2/((8*c - d*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

(-5*c + d*x^3)/(81*c^2*d*(8*c - d*x^3)*Sqrt[c + d*x^3]) + ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])]/(243*c^(5/2)*d)

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 219, normalized size = 2.49 \begin {gather*} \left [\frac {{\left (d^{2} x^{6} - 7 \, c d x^{3} - 8 \, c^{2}\right )} \sqrt {c} \log \left (\frac {d x^{3} + 6 \, \sqrt {d x^{3} + c} \sqrt {c} + 10 \, c}{d x^{3} - 8 \, c}\right ) - 6 \, {\left (c d x^{3} - 5 \, c^{2}\right )} \sqrt {d x^{3} + c}}{486 \, {\left (c^{3} d^{3} x^{6} - 7 \, c^{4} d^{2} x^{3} - 8 \, c^{5} d\right )}}, -\frac {{\left (d^{2} x^{6} - 7 \, c d x^{3} - 8 \, c^{2}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{3 \, c}\right ) + 3 \, {\left (c d x^{3} - 5 \, c^{2}\right )} \sqrt {d x^{3} + c}}{243 \, {\left (c^{3} d^{3} x^{6} - 7 \, c^{4} d^{2} x^{3} - 8 \, c^{5} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x, algorithm="fricas")

[Out]

[1/486*((d^2*x^6 - 7*c*d*x^3 - 8*c^2)*sqrt(c)*log((d*x^3 + 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) -
6*(c*d*x^3 - 5*c^2)*sqrt(d*x^3 + c))/(c^3*d^3*x^6 - 7*c^4*d^2*x^3 - 8*c^5*d), -1/243*((d^2*x^6 - 7*c*d*x^3 - 8
*c^2)*sqrt(-c)*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) + 3*(c*d*x^3 - 5*c^2)*sqrt(d*x^3 + c))/(c^3*d^3*x^6 - 7*
c^4*d^2*x^3 - 8*c^5*d)]

________________________________________________________________________________________

giac [A]  time = 0.16, size = 72, normalized size = 0.82 \begin {gather*} -\frac {\arctan \left (\frac {\sqrt {d x^{3} + c}}{3 \, \sqrt {-c}}\right )}{243 \, \sqrt {-c} c^{2} d} - \frac {d x^{3} - 5 \, c}{81 \, {\left ({\left (d x^{3} + c\right )}^{\frac {3}{2}} - 9 \, \sqrt {d x^{3} + c} c\right )} c^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x, algorithm="giac")

[Out]

-1/243*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*c^2*d) - 1/81*(d*x^3 - 5*c)/(((d*x^3 + c)^(3/2) - 9*sqrt
(d*x^3 + c)*c)*c^2*d)

________________________________________________________________________________________

maple [C]  time = 0.19, size = 463, normalized size = 5.26 \begin {gather*} -\frac {\sqrt {d \,x^{3}+c}}{243 \left (d \,x^{3}-8 c \right ) c^{2} d}-\frac {2}{243 \sqrt {\left (x^{3}+\frac {c}{d}\right ) d}\, c^{2} d}-\frac {i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {\left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (2 \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )^{2} d^{2}+i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right ) d -\left (-c \,d^{2}\right )^{\frac {1}{3}} \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right ) d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}-\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, -\frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )^{2} d +i \sqrt {3}\, c d -3 c d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )-3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )}{18 c d}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{\left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) d}}\right )}{1458 c^{3} d^{3} \sqrt {d \,x^{3}+c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x)

[Out]

-1/243*(d*x^3+c)^(1/2)/(d*x^3-8*c)/c^2/d-2/243/((x^3+c/d)*d)^(1/2)/c^2/d-1/1458*I/d^3/c^3*2^(1/2)*sum((-c*d^2)
^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)
/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/
d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3)*_a
lpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2
)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),-1/18*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)*c*d
-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/c/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(
1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*d-8*c))

________________________________________________________________________________________

maxima [A]  time = 1.27, size = 85, normalized size = 0.97 \begin {gather*} -\frac {\frac {6 \, {\left (d x^{3} - 5 \, c\right )}}{{\left (d x^{3} + c\right )}^{\frac {3}{2}} c^{2} - 9 \, \sqrt {d x^{3} + c} c^{3}} + \frac {\log \left (\frac {\sqrt {d x^{3} + c} - 3 \, \sqrt {c}}{\sqrt {d x^{3} + c} + 3 \, \sqrt {c}}\right )}{c^{\frac {5}{2}}}}{486 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x, algorithm="maxima")

[Out]

-1/486*(6*(d*x^3 - 5*c)/((d*x^3 + c)^(3/2)*c^2 - 9*sqrt(d*x^3 + c)*c^3) + log((sqrt(d*x^3 + c) - 3*sqrt(c))/(s
qrt(d*x^3 + c) + 3*sqrt(c)))/c^(5/2))/d

________________________________________________________________________________________

mupad [B]  time = 4.26, size = 97, normalized size = 1.10 \begin {gather*} \frac {\ln \left (\frac {10\,c+d\,x^3+6\,\sqrt {c}\,\sqrt {d\,x^3+c}}{8\,c-d\,x^3}\right )}{486\,c^{5/2}\,d}-\frac {\left (\frac {5}{81\,c\,d}-\frac {x^3}{81\,c^2}\right )\,\sqrt {d\,x^3+c}}{8\,c^2+7\,c\,d\,x^3-d^2\,x^6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/((c + d*x^3)^(3/2)*(8*c - d*x^3)^2),x)

[Out]

log((10*c + d*x^3 + 6*c^(1/2)*(c + d*x^3)^(1/2))/(8*c - d*x^3))/(486*c^(5/2)*d) - ((5/(81*c*d) - x^3/(81*c^2))
*(c + d*x^3)^(1/2))/(8*c^2 - d^2*x^6 + 7*c*d*x^3)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2}}{\left (- 8 c + d x^{3}\right )^{2} \left (c + d x^{3}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(-d*x**3+8*c)**2/(d*x**3+c)**(3/2),x)

[Out]

Integral(x**2/((-8*c + d*x**3)**2*(c + d*x**3)**(3/2)), x)

________________________________________________________________________________________